Semi-parametric modeling of excesses above high multivariate thresholds with censored data
نویسنده
چکیده
How to include censored data in a statistical analysis is a recurrent issue in statistics. In multivariate extremes, the dependence structure of large observations can be characterized in terms of a non parametric angular measure, while marginal excesses above asymptotically large thresholds have a parametric distribution. In this work, a flexible semi-parametric Dirichlet mixture model for angular measures is adapted to the context of censored data and missing components. One major issue is to take into account censoring intervals overlapping the extremal threshold, without knowing whether the corresponding hidden data is actually extreme. Further, the censored likelihood needed for Bayesian inference has no analytic expression. The first issue is tackled using a Poisson process model for extremes, whereas a data augmentation scheme avoids multivariate integration of the Poisson process intensity over both the censored intervals and the failure region above threshold. The implemented MCMC algorithm allows simultaneous estimation of marginal and dependence parameters, so that all sources of uncertainty other than model bias are captured by posterior credible intervals. The method is illustrated on simulated and real data. Multivariate extremes; censored data; data augmentation; semi-parametric Bayesian inference; MCMC algorithms.
منابع مشابه
Semi-parametric Modelling of Excesses above High Multivariate Thresholds with Censored Data
One commonly encountered problem in statistical analysis of extreme events is that very few data are available for inference. This issue is all the more important in multivariate problems that the dependence structure among extremes has to be inferred. In some cases, e.g. in environmental applications, it is sometimes possible to increase the sample size by taking into account historical or inc...
متن کاملMeta-heuristic algorithms for parameter estimation of semi-parametric linear regression models
Consider the semi-parametric linear regression model Y = ′X+ , where has an unknown distribution F0. The semi-parametric MLE ̃ of under this set-up is called the generalized semi-parametric MLE(GSMLE).Although the GSML estimation of the linear regression model is statistically appealing, it has never been attempted due to difficulties with obtaining the GSML estimates of and F until recent work...
متن کاملAccuracy evaluation of different statistical and geostatistical censored data imputation approaches (Case study: Sari Gunay gold deposit)
Most of the geochemical datasets include missing data with different portions and this may cause a significant problem in geostatistical modeling or multivariate analysis of the data. Therefore, it is common to impute the missing data in most of geochemical studies. In this study, three approaches called half detection (HD), multiple imputation (MI), and the cosimulation based on Markov model 2...
متن کاملMultivariate Frailty Modeling in Joint Analyzing of Recurrent Events with Terminal Event and its Application in Medical Data
Background and Objectives: In many medical situations, people can experience recurrent events with a terminal event. If the terminal event is considered a censor in this type of data, the assumption of independence in the analysis of survival data may be violated. This study was conducted to investigate joint modeling of frequent events and a final event (death) in breast cancer patients using ...
متن کاملFailure Process Modeling with Censored Data in Accelerated Life Tests
Manufacturers need to evaluate the reliability of their products in order to increase the customer satisfaction. Proper analysis of reliability also requires an effective study of the failure process of a product, especially its failure time. So, the Failure Process Modeling (FPM) plays a key role in the reliability analysis of the system that has been less focused on. This paper introduces a f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Multivariate Analysis
دوره 136 شماره
صفحات -
تاریخ انتشار 2015